A test of the haploid susceptibility hypothesis using a species with naturally occurring variation in ploidy


The haploid susceptibility hypothesis (HSH) was proposed as an explanation for how behavioral roles in haplodiploid social systems evolved. It posits that haploid males are more susceptible to disease than diploid females due to decreased genetic variability at key disease resistance loci. The resulting decreased immunocompetence is hypothesized to have played a role in the evolution of social behavior by limiting the behavioral repertoire haploids perform. Here, we test this hypothesis in a study system that separates ploidy from behavioral sex roles: Polistes dominulus, a social wasp, has colonies with naturally occurring diploid males. We report results from two immune function assays—hemolymph phenoloxidase activity and encapsulation response—performed on haploid males, diploid males, and diploid females. Our data suggest that ploidy is not a significant contributor to immune function in P. dominulus; thus, our data do not support the HSH for the evolution of behavioral roles. Instead, our data indicate that time of emergence is the best predictor of immune function in Polistes. We speculate that seasonal trends result from seasonal differences in pathogens and parasites.

Insectes sociaux
Dr. July Pilowsky
Dr. July Pilowsky
he / they / she

Computational ecologist using models to understand the natural world.